
Improving schema DDL 375

when you have to read exception messages. Note that the hbm2ddl exporter con-
siders constraint names only for foreign keys that have been set on the noninverse
side of a bidirectional association mapping.

 Foreign key constraints also have features in SQL that your legacy schema may
already utilize. Instead of immediately rejecting a modification of data that would
violate a foreign key constraint, an SQL database can CASCADE the change to the
referencing rows. For example, if a row that is considered a parent is deleted, all
child rows with a foreign key constraint on the primary key of the parent row may
be deleted as well. If you have or want to use these database-level cascading
options, enable them in your foreign key mapping:

<class name="Item" table="ITEM">
 ...
 <set name="bids" cascade="save-update, delete">
 <key column="ITEM_ID" on-delete="cascade"/>
 <one-to-many class="Bid"/>
 </set>

</class>

Hibernate now creates and relies on a database-level ON CASCADE DELETE option
of the foreign key constraint, instead of executing many individual DELETE state-
ments when an Item instance is deleted and all bids have to be removed. Be
aware that this feature bypasses Hibernate’s usual optimistic locking strategy for
versioned data!

 Finally, unrelated to integrity rules translated from business logic, database
performance optimization is also part of your typical DDL customization effort.

8.3.6 Creating indexes

Indexes are a key feature when optimizing the performance of a database applica-
tion. The query optimizer in a database-management system can use indexes to
avoid excessive scans of the data tables. Because they’re relevant only in the physi-
cal implementation of a database, indexes aren’t part of the SQL standard, and
the DDL and available indexing options are specific for a particular product. How-
ever, the most common DDL for typical indexes can be embedded in a Hibernate
mapping (that is, without the generic <database-object> element).

 Many queries in CaveatEmptor will probably involve the endDate property of
an auction Item. You can speed up these queries by creating an index for the col-
umn of this property:

<property name="endDate"
 column="END_DATE"

